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ABSTRACT 
Prof. Laithwaite had stated that gyroscopic weight loss is observable, and that his fellow 
professors specializing in rotational mechanics had not been able to discover the theoretical 
mechanisms for the weight loss of the 50 lb motorcycle wheel demonstration. 
 
NASA’s work on gyroscopic weight loss, however, did not produce any measurable results. A 
comparison of Prof. Laithwaite’s experiment with NASA’s revealed substantial differences, thus 
reopening this issue. If a gyroscope can lose weight, under what conditions is this observable, 
and what are the possible theoretical explanations for such an effect?  
 
This paper uses a structured approach to compare a gravitational field with a centripetal force 
field to determine the key experimental parameters. These parameters account for the differences 
between Prof. Laithwaite’s experiments and NASA’s. 
 
The purpose of this paper is to make available publicly, a through and reasoned, deconstruction 
and analysis of what Prof. Eric Laithwaite had observed. Primarily because, both sides, the yea 
and the nay sayers have not made their analysis available to public or peer scrutiny. It is hoped 
that the material presented will encourage others to develop further theoretical analyses and 
experimental designs, until we are sure that weight loss is or is not possible.  
 
The paper presents sufficient experimental evidence to confirm that the Laithwaite gyroscopic 
weight loss is genuine, and not due to gyroscopic forces. It then presents a possible theoretical 
approach to explaining this weight loss, a critical requirement for the development of future 
propulsion technologies. Two approaches are examined, the curvature approach and the gradient 
approach. Both approaches are derived within the context of Special Relativity, a body of 
knowledge that is very well documented and understood. 
 
Does the Laithwaite Gyroscopic Weight Loss have Propulsion Potential? My current conclusion 
is that further experiments are required to calibrate this behavior. At this juncture, it is difficult to 
differentiate between gravitational buoyancy and thrust. 
 
Further research will shed light on whether these results will impact theoretical and (Ning Li) 
experimental work (Podkletnov & Nieminen, and Hayasaka & Takeuchi). 
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1. INTRODUCTION 
 
1.1 A Brief History 
In 1973, Prof. Eric Laithwaite (1921 - 1997)1, the inventor of the linear motor and Emeritus 
Professor of Heavy Electrical Engineering at Imperial College, London, UK, presented some 
anomalous gyroscopic behavior for the Faraday lectures at the Royal Institution. Included in this 
lecture-demonstration was a big motorcycle wheel weighing 50lb that he spun up and raised 
effortlessly above his head with one hand, claiming it had lost weight and so contravened 
Newton's third law. 
 
 
1.2 Laithwaite’s Findings 
Laithwaite demonstrated2 four rules3. A precessing gyroscope,  
1. Will not exhibit lateral forces in the plane of precession. 
2. Will not exhibit centrifugal forces in the plane of precession. 
3. Will not exhibit angular momentum in the plane of precession. 
4. Will lose weight. 
 
 
1.3 Scope of Paper 
In this paper I will examine only the fourth rule, as this is the most pertinent to future space 
propulsion technologies. I take a scientific approach to examining Laithwaite’s fourth rule, 
duplicating wheels, and fabricating an experimental set-up to prove or disprove this last claim. 
 
 
1.4 Other Similar Reported Behavior 
In researching this subject I found that others (Podkletnov & Nieminen, 1992, and Hayasaka & 
Takeuchi, 1989) had observed similar anomalous weight change behavior with, or in the 
presence of, spinning disc. Could there be some commonality with the Laithwaite gyroscopic 
weight loss? 
 
 
1.5 The Window of Opportunity 
In deconstructing and structuring this research, I present, first, a possible theoretical explanation. 
I distinguish between two types of spinning disc behavior. I assume one type of spinning disc 
behavior losses weight (Laithwaite) while the other (Jones) does not. After all, not all gyroscopes 
lose weight. Examples of those that do not lose weight are those used for navigation. The hunt, is 
then for the window of opportunity for when a gyroscope will lose weight, if they do.  
 
 
1.6 The Purpose of this Paper 
The purpose of this paper is to make available publicly, a through and reasoned, deconstruction 
and analyses of what Prof. Eric Laithwaite had observed. Primarily because, both sides, the yea 
and the nay sayers have not made their analyses available to public or peer scrutiny. It is hoped 
that the material presented will encourage others to develop further theoretical analyses and 
experimental designs.  



 
 
2. A REVIEW OF THE PRINCIPLE OF EQUIVALENCE & ITS CONSEQUENCES 
 
2.1 Introduction 
There has been much work on relativistic rotating masses, Browne (1977) for example. 
However, the problems addressed are about near velocity of light behavior of rotating masses. In 
order to understand how the Laithwaite gyroscopic weight loss occurs, a different approach to 
gravitational fields is required. 
 
 
2.2 Principle of Equivalence 
The Principle of Equivalence (Schutz 2003) states that if gravity were everywhere uniform we 
could not distinguish it from acceleration. That is a point observer within a gravitational field 
would not be able to distinguish between a gravitational field and acceleration.  
 
 
2.3 Time Dilation is the Key Parameter 
Taking this a step further, Solomon (2001) had shown that the escape or free-fall-from-infinity 
velocities are dictated by the time dilation of the gravitational field at that point in space, one can 
now interpret velocity and acceleration as representation of time dilation or vice versa. Such that, 
using the Lorentz transformation (Gibilisco 1983) equations, 
 
 
v = c . √( 1 -t∞2 / tv

2 ) (2.1) 
 
 
 = c . √( 1 - 1 / tv

2 ) (2.2) 
 
 
where v = velocity of interest at a specific radial distance from the center of 

the gravitational source 
 c = velocity of light 
 t∞ = time dilation at infinity, 1 
 tv = time dilation at a specific radial distance from the center of the 

gravitational source 
 
 
The results of these formulae are tabulated in Table 2.1 below, using planets in our Solar System. 
The empirical evidence concurs with the hypothesis that radial velocities are governed by time 
dilation. This is not in disagreement with Relativity’s Principle of Equivalence. 
 
The hypothesis (Solomon, 2001) is that time dilation causes a shift in the center of mass. For a 
hemisphere it is given by, 
 
 



SCM  =  (3/8) sxo (dxd/dxo - 1)              (2.3) 
 
 
where dxd = duration required to detect particle under time dilation 
 dxo = duration required to detect particle without time dilation 
 sxo = space required to detect particle along axis of motion, without time 

dilation 
 SCM = shift in the center of mass. 
 
 
This is essentially reduced to, 
 
SCM  =  (3/8) sxo (td - 1)              (2.4) 
 
 
where td = time dilation at that point, where the particle is. 
  = dxd/dxo
 
 
Since (td - 1) > 0 (2.5) 
 
 
SCM > 0 a shift towards greater time dilation. 
 
 
Equation (2.5) presents a mechanism, based solely on Special Relativity, on how time dilation 
causes the center of mass of a particle to shift in the direction of increasing time dilation, thereby 
providing the effect of gravity. 
 
 
3. ANALYSIS OF TIME DILATION IN A GRAVITATIONAL FIELD 
 
3.1 Tangential & Radial Parameters 
Solomon (2001) had shown that the escape or free-fall-from-infinity velocities are dictated by 
the time dilation of the gravitational field at that point in space. One infers that there are two time 
dilation parameters in a gravitational field, and that time dilation is a vector. Radial time dilation, 
tr and tangential time dilation, tt. These correspond to the free fall or escape (radial), vr, and 
orbital (tangential), vt, velocities in a gravitational field respectively. The relationship between 
the velocities and time dilation is governed by Lorentz-FitzGerald transformation (Gibilisco 
1983), such that, 
 
 
v = c . √( 1 -t∞2 / tv

2 ) (3.1) 
 
 



where v = velocity of interest at a specific radial distance from the center of 
the gravitational source 

 c = velocity of light 
 t∞ = time dilation at infinity, 1 
 tv = time dilation at a specific radial distance from the center of the 

gravitational source 
 
 
Therefore, the respective velocities are, 
 
 
vr = c . √( 1 -t∞2 / tr

2 ) (3.2) 
 
 
vt = c . √( 1 -t∞2 / tt

2 ) (3.3) 
 
 
 
Given that the escape velocity, ve, and the orbital velocity, vo, of a gravitational field (Schutz 
2003) is governed by the relationships, 
 
 
ve = √ (2GM/R) (3.4) 
 
 
vo = √ (GM/R) (3.5) 
 
 
Where G = gravitational constant. 
 M = mass of gravitational source, e.g. Earth. 
 R = distance from the center of the gravitational source. 
 
One can substitute the radial velocity, vr, for the escape velocity, ve, and tangential velocity, vt, 
for the orbital velocity, vo, to get, the radial and tangential time dilation, as follows, 
 
 
tr = 1 / √( 1 -2GM/(R.c2) ) (3.6) 
 
 
tt = 1 / √( 1 -GM/(R.c2) ) (3.7) 
 
 
or 
 
tr = 1 / √( 1 - Kr/R ) (3.8) 
 



 
tt = 1 / √( 1 – Kt/R ) (3.9) 
 
 
where Kr = 2GM/c2

 Kt = GM/c2

 
 
3.2 Gradient & Curvature 
We can now determine the gradient and curvature of the respective time dilations. The gradient 
of the time dilations with respect to radial distance, R, is given by, 
 
 
Gradient = dt/dR (3.10) 
 
 
And solving, gives, 
 
 
dtr/dR = (-Kr/2R2).(1/(1 - Kr/R)3/2) (3.11) 
 
 
dtt/dR = (-Kt/2R2).(1/(1 – Kt/R)3/2) (3.12) 
 
 
It turns out that the second term, in both equations, (3.11) & (3.12), is equal to 1, therefore, the 
two equations reduce to, 
 
 
dtr/dR = (-Kr/2R2) = - (GM/c2)/R2 (3.13) 
 
 
dtt/dR = (-Kt/2R2)  = - (GM/2c2)/R2 (3.14) 
 
 
and the second differential is given by 
 
 
 
d2tr/dR2 = (Kr/R3).((1- Kr/R)-3/2) + (3Kr

2/4R4).((1- Kr/R)-5/2) (3.15) 
 
 
d2tt/dR2 = (Kt/R3).((1- Kt/R)-3/2) + (3Kt

2/4R4).((1- Kt/R)-5/2) (3.16) 
 
 
Curvature (Kline 1977) of the time dilations is given by 



 
 
Curvature, C = ± (d2y/dx2) / (1 + (dy/dx)2 ) 3/2 (3.17) 
 
 
And solving, gives, the radial, Cr, and tangential, Ct, curvatures as follows 
 
 
Cr = [(Kr/R3).((1- Kr/R)-3/2) + (3Kr

2/4R4).((1- Kr/R)-5/2)]/[1 + (Kr
2/4R4)/(1- Kr/R)3]3/2

 (3.18) 
 
 
Ct = [(Kt/R3).((1- Kt/R)-3/2) + (3Kt

2/4R4).((1- Kt/R)-5/2)]/[1 + (Kt
2/4R4)/(1- Kt/R)3]3/2  

(3.19) 
 
 
It turns out that the denominator is equal to 1, thus the two equations reduce to, 
 
 
 
Cr = (Kr/R3).((1- Kr/R)-3/2) + (3Kr

2/4R4).((1- Kr/R)-5/2) (3.20) 
 
 = d2tr/dR2 (3.21) 
 
 
Ct = (Kt/R3).((1- Kt/R)-3/2) + (3Kt

2/4R4).((1- Kt/R)-5/2)  (3.22) 
 
 = d2tt/dR2 (3.23) 
 
 
The important finding here is that the curvature of the time dilation is also the second derivative. 
 
 
And since the second term (3.5639 x 10-32) is much smaller than the first (3.4177x10-23), (3.20) 
& (3.22) reduce to, 
 
 
Cr = (Kr/R3).((1- Kr/R)-3/2) (3.24) 
 
 
Ct = (Kt/R3).((1- Kt/R)-3/2)  (3.25) 
 
 
As, the second term is 0.99999999791447 or approximately 1, (3.22) & (3.23) can be further 
simplified to, 
 



 
Cr = (Kr/R3) = (2GM/c2)/ R3  (3.26) 
 
 
Ct = (Kt/R3)  = (GM/c2)/ R3   (3.27) 
 
 
Figure 3.1, 3.2 and 3.3 present the results of these calculations. 
 
 
4. ANALYSIS OF TIME DILATION IN A CENTRIPETAL FIELD 
 
4.1 Tangential Parameters 
In this section we review the centripetal force field from the perspective of time dilation. As with 
gravitational fields, centripetal force fields have two time dilation parameters. Radial time 
dilation, tr and tangential time dilation, tt. However, radial velocity, vr, is zero, and tangential 
velocity, vt, is determined by the radius, r, and angular rotation ω. We will review tangential 
parameters, before we look at radial parameters. Using Lorentz transformation,  
 
 
tt = to / √( 1 – vt

 2 / c2 ) (4.1) 
 
 
where vt = velocity is the tangential velocity of a rotating plane, a radial 

distance r from the center. 
 c = velocity of light 
 to = time dilation when rotating plane is stationary, 1 
 tv = time dilation at a specific radial distance, r, from the center of the 

rotating plane 
 
 
Given that, the tangential velocity is governed by the speed of rotation, ω, then 
 
 
vt = ω . r (4.2) 
 
 
tt = 1 / √( 1 – ω2.r2 / c2 ) (4.3) 
 
 
or 
 
 
tt = 1 / √( 1 - kt r2 ) (4.4) 
 
 



where kt = ω 2 / c 2

 
 
 
4.2 Gradient & Curvature 
We can now determine the gradient and curvature of the tangential time dilation. The gradient of 
time dilation with respect to radial distance, R, is given by, 
 
 
Gradient = dtt/dr (4.5) 
 
 
And solving, gives, 
 
 
dtt/dr = (kt r).(1 - kt r2)-3/2 (4.6) 
 
 
It turns out that the second term, in equations (4.6), is equal to 1, therefore, the (4.6) reduces to, 
 
 
dtt/dr = (kt r ) (4.7) 
 
 
and the second differential is given by 
 
 
d2tt/dr2 = kt.(1- ktr2)-3/2   +   (3.kt

2 . r2).(1- ktr2)-5/2 (4.8) 
 
 
as both denominators reduce to 1, equation (4.8) reduces to 
 
 
d2tt/dr2 = kt. + 3.kt

2 . r2 (4.9) 
 
 
Curvature (Kline 1977) of the tangential time dilation is given by  
 
 
Curvature, C = ± (d2y/dx2) / (1 + (dy/dx)2 ) 3/2 (4.10) 
 
 
And solving, gives, tangential time dilation curvature, Ct, as follows 
 
 



Ct = [kt.(1- ktr2)-3/2   +   (3.kt
2 . r2).(1- ktr2)-5/2] / [1 + {(kt r).(1 - kt r2)-3/2)}2]3/2

 (4.11) 
 
 
 
Since the denominators is equal to 1, equation (4.11) reduces to, 
 
 
Ct = kt. + 3.kt

2 . r2 (4.12) 
 
 = d2tt/dr2 (4.13) 
 
 
4.4 Gradient of Time Dilation is the Key Parameter 
One can summarize the numerical analysis presented in figures 3.1, 3.2, 3.3, 4.1, and 4.2, in 
Table 4.1, below.  
 
If gyroscopic spin is to produce gravity modifications, of the type that results in some amount of 
weightlessness, the gyroscopic spin has to have a parameter value that is opposite to gravity’s. 
This is achieved with the gradient of time dilation. The centripetal force field gradient of time 
dilation is of the opposite sign to that of gravity’s. The magnitude of the time dilation behaves in 
the correct manner to increasing or decreasing tangential velocities and therefore, force.  
 
Note that curvature is positive for both fields, and is therefore, unable to distinguish attraction 
from repulsion. However, change in curvature has opposite behaviors. Curvature, therefore, is 
not a useful property for propulsion technology theory development, as it cannot distinguish the 
direction of the increasing time dilation. It has no vector properties. 
 
 
5.0 HUNT FOR THE WINDOW 
 
“You have to find the window where physics behaves ‘differently’ ”4. This window of 
opportunity, if it exists, will not be found in the known theoretical models, as Laithwaite and his 
colleagues have investigated existing bodies of knowledge thoroughly. Sections 2, 3 & 4 present 
a new avenue for research. 
 
Section 3 presents equations for the shape of both radial and tangential time dilation behavior in 
a gravitational field. One can view the gravitational field graphically, Fig 5.1 & 5.2, as a function 
of time dilation. The graph has been presented in a manner so that one can visualize how time 
dilation forms a funnel like structure in 3-dimensional space. 
 
Section 4, however, does not discuss radial time dilation for a centripetal force. There isn’t one, 
because there is no radial velocity. Therefore, a conic like structure in 3-dimensional space does 
not exist for a non-rotating gyroscopic disc, like that of gravity. 
 



However, if one were to rotate (not precess) the spinning gyroscopic disc, one produces a 
centripetal force overlaid on the tangential time dilation field of the spinning disc, as discussed in 
Section 4. The calculated centripetal acceleration, Ar, at any point along the radius of the 
spinning disc is given by, 
 
 
Ar = ωl . l / cos(θ) (5.1) 
 
 
where  ωl = rotational frequency of the spinning disc. 
 θ = angle between the level arm, from pivot, and the hypotenuse, to a point on 

the radius of the spinning disc. 
 l = the lever arm length. 
 
 
A quick and dirty formula for radial time dilation can be derived from equation (3.8), and 
substituting centripetal acceleration for gravity’s, g, one gets, 
 
 
tr = 1 / √( 1 – 2.(ωl

 2 / c 2).r2 ) (5.2) 
 
 
Plotting this graphically, Fig 5.3 and 5.4, we see that the time dilation behavior is a conic (and 
the opposite of gravity’s funnel) in the presence of a centripetal force that causes radial time 
dilation field to “pop” into existence. This is a key attribute, if rotating spinning wheels are to 
evidence some form of gravity modification.  
 
Since this is a quick and dirty approach to estimating the radial time dilation, at this juncture we 
face three problems, 

1. Do not know how to combine the two time dilations, radial and tangential, into a single 
unified field for centripetal force fields. 

2. To proceed with this theoretical analysis, we require empirical data, to provide 
suggestions on how radial and tangential time dilations are to be combined into a single 
unified field that can negate or neutralize the surrounding gravitational field. 

3. What is the range of this field effect? 
4. What properties does this field have? Is a thrust or is it just gravitational buoyancy? 

 
 
6. DECONSTRUCTING THE LAITHWAITE AND NASA EXPERIMENTS 
 
6.1 The Laithwaite Experiment 
Laithwaite2 presented two types of demonstrations of weight change. The first, the Laithwaite 
Effect5, was the Big Wheel experiment, which visibly demonstrates weight loss. See Fig. 6.1 & 
6.2. The Big Wheel was a 50 lb (≈ 22.7 kg) motorcycle wheel, spinning at 5,000 rpm, attached to 
a 3 ft rod (≈ 1 m), which Laithwaite held by one wrist, and slowly swung it over and around his 
head, at about 7 rpm.  Experiments show that the wrist is not capable of holding more than 3 lb 



(≈ 1.4 kg) at the end of a 3 ft (≈ 1 m) rod weighing 2.5 lb (≈ 1.2 kg).  Therefore, the Big Wheel 
had to have lost about 45 lb (≈ 20.5 kg) 
 
The second, the Jones Effect, was the Small Wheel experiment, Fig 6.3. This experiment 
consisted of two 2-inch (≈ 5 cm) radius gyroscopes, using gyroscopic motions to create a 
directed force. Laithwaite and Dawson were granted a US patent (5,860,3176) on January 19, 
1999, for a device based on the principles of the Small Wheel experiments. 
 
In this paper I consider the Big Wheel experiment only. This experiment is much simpler, and 
therefore, easier to reproduce, test, and draw out the governing principles. 
 
 
6.2 The NASA Experiment 
In 2002, NASA7 investigated this Laithwaite gyroscopic weight loss behavior (Thomas 2002). 
NASA’s experiment comprised of manually spinning 4 in (≈ 10 cm) radius bicycle wheel. The 
experiment and results are presented here as a comparison to Laithwaite’s original 
demonstration.  
 
 
6.3 Laithwaite-NASA comparisons 
Having reviewed the videos of Laithwaite’s demonstration, and reconstructed NASA’s 
experiments, a table of differences in the experiments, Table 6.1, is documented. It is rather 
obvious that the experiment that NASA conducted was not the same as Laithwaite’s. The good 
news is that the comparisons suggest boundary conditions, a window of opportunity, exists. 
 
Further, it is possible to test whether precession or centrifugal rotation can explain some of the 
observable results. In particular, the most suitable observable results would be the rotation, of the 
Big Wheel about Laithwaite. There are two approaches, gravity induced precession, and 
centrifugal based rotation. 
 
 
6.4 Gravity Induced Precession 
Using, the equation8, for gravity induced precession, 
 
 
ωprecession =M.g.R / L
 (6.4.1) 
 
 
where M = mass of spinning wheel or gyroscope, 22.7 kg. 
 L = angular momentum 
 R = length of the torque arm, 1m or 2m, depending whether Laithwaite’s arm 

was outstretched. 
 g = acceleration due to gravity, 9.81 m/s2. 
 
Since9, 



 
 
L = I . ω (6.4.2) 
 
 
I = ½ . M r2 (6.4.3) 
 
 
Where I = moment of inertia 
 ω = spin of the gyroscope, 5,000 rpm or 83.3Hz. 
 r = radius of the gyroscope or wheel, 0.3m 
 
 
Substituting, (6.4.2) & (6.4.3) into (6.4.1), one gets, 
 
 
ωprecession =2 (g.R) / (ω.r2)
 (6.4.4) 
 
 = 314 rpm (5.2 Hz) when R = 2m 
 
 = 157 rpm (2.6 Hz) when R = 1m 
 
 
Gravity induced precession frequency suggest that the rotation of the Big Wheel about 
Laithwaite should be somewhere between 157 and 314 rpm, but eh observed value is about 
7rpm. This suggest that gravity induced precession cannot explain the Big Wheel experiment. 
 
Inverting the question to figure out the observed gravitational acceleration, g’, equation (6.4.4) 
becomes, 
 
 
g’ =  (ωprecession . ω.r2) / (2 R) (6.4.5) 
 
 = 0.22 m/s2 when R = 2m 
 
 = 0.44 m/s2 when R = 1m 
 
 
Therefore, the observed weight of this 50lb (22.7kg) Big Wheel is between 1.1 and 2.2 lb (0.5 to 
1 kg). 
 
 
6.5 Centrifugal Based Rotation 
Using, the conical pendulum equation10, for centrifugal based rotation, 
 



 
ωcentrifugal =√ [g / ( l cos(θ))]
 (6.5.1) 
 
 = 450 rpm (7.5 Hz) when l = 2m 
 
 = 637 rpm (10.6 Hz) when l = 1m 
 
 
where ωcentrifugal = centrifugal based rotation. 
 g = acceleration due to gravity, 9.81 m/s2. 
 l = length of string, or in this case the rod + Laithwaite’s arm, 1m or 2m, 

depending whether Laithwaite’s arm was outstretched. 
 θ =  angle of rod + arm to the vertical, approximately 85º. 
 
 
We observe that the conical pendulum solution cannot account for the Big Wheel rotation, as the 
rotation required to support the Big Wheel at almost horizontal is between 450 and 637 rpm, but 
the observed rotation is 7 rpm. This suggests that centrifugal force cannot explain the Big Wheel 
experiment. 
 
On can turn this problem around and ask the question what is the observed gravitational 
acceleration, g’. Equation 2.5.1, can be rewritten as, 
 
 
g’ = ωcentrifugal

2 . l cos(θ) (6.5.2) 
 
 = 0.002 m/s2 when l = 2m 
 
 = 0.001 m/s2 when l = 1m 
 
 
Therefore, the observed weight of this 50lb (22.7kg) Big Wheel is between 0.1 and 0.2 oz (2 to 6 
grams).  
 
 
6.6 Error Sensitivity Analysis 
Since this first phase of experimental analysis consists of reviewing video documentation 
(Laithwaite), and 
verbal commentary (NASA) of experimental designs and results, I asked the question, could 
errors in the estimation of the experimental parameters lead to different results? Or, how 
sensitive are the observed effects to error in the estimation of the experimental design? 
 
Equation (6.4.4) shows that for a spinning disc, the frequency of the precession is independent of 
the mass of the disc. Equation (6.4.4) was used to generate different ωprecession values for each 
change in the three parameters. The length of the torque arm, R was varied between 1.5m to 



2.5m. The radius of the spinning wheel was varied between 26cm to 34 cm. The spin of the 
wheel was varied between 4,500 rpm to 5,500 rpm.  
 
The results are presented in Fig. 6.4. The theoretical frequency of precession, ωprecession, ranges 
between 167 rpm and 580 rpm. This is well outside the observed Big Wheel rotation of about 7 
rpm. 
 
Further, the analysis of a bicycle wheel precession (How-Stuff-Work11 video) is presented in 
Table 6.2. This analysis shows that the mathematical relationships, when precession is in effect, 
do work, and are correct. 
 
One concludes that the Big Wheel phenomenon Laithwaite was demonstrating was not 
gyroscopic precession, though it appeared to be, because the practical results do not match 
theoretical results by two orders of magnitude.  
 
 
7. WHAT DID LAITHWAITE DEMONSTRATE? 
 
7.1 Brief background 
 
The analyses in this section are based on a through review of the Laithwaite videos12. It is my 
hypothesis that Laithwaite demonstrated two different phenomena. 
 

1. The Laithwaite Effect or the Big Wheel Demonstration: Under one set of conditions a 
spinning disc will lose weight, independently of its orientation with the Earth’s 
gravitational field. 

 
2. The Jones Effect13 or the Small Wheel Demonstration: Under another set of conditions, 

spinning discs will provide directional motion that is dependent upon the gyroscopic 
orientation of the device. 

 
 
7.2 Precession or Rotation? 
The How-Stuff-Works demonstration, Table 6.2, shows that precession is a proven mathematical 
fact. Sensitivity analysis, Fig 6.4, shows that on basis theoretical precession analysis, the 
frequency of precession should be between 167 rpm and 580 rpm. Table 6.1 shows that the 
theoretical precession, if all parameters are correct, should be 314 rpm. Actual observed is 7 rpm. 
These observations suggest that the Laithwaite demonstrations did not involve precession as a 
mechanism.  
 
Table 6.1 shows that on the basis of centrifugal forces the rotational frequency should be 157 
rpm. Actual observed is 7 rpm. This suggests that the spinning wheel is significantly lighter than 
it should be. Laithwaite believed that mass transfer (US Patent 5,860,317) was the reason for this 
effect.  
 



The Laithwaite Big Wheel Demonstration is two orders of magnitude different from that 
required of precession or centrifugal force theories. Something is definitely amiss. 
 
Graphical deconstruction of the two demonstrations, are presented in Figures 7.1, 7.2 & 7.3. Fig. 
7.1 demonstrates how the three orthogonal forces in gyroscopic motion interact. Fig 7.2 shows 
the mathematically proven precessing behavior of a spinning disc. The graphical analysis shown 
in Fig 7.3 suggests that if the pivot is placed at some distance beyond the radius of the spinning 
disc, the net forces should mimic centripetal behavior. The position of the pivot point determines 
whether the spinning disc is precessing or rotating. In Laithwaite’s experiments, the pivot’s 
distance is about 3x radius or more. 
 
If the pivot point is at a distance less than a particular value, P, (to be determined as part of future 
research) from the center of the disc, the gyroscopic action is precession. Fig 7.2 illustrates the 
net forces, on the disc. The precessing forces change direction across the disc. 
 
If the pivot point is at a distance greater than, P, from the center of the disc, the gyroscopic action 
is rotation. Fig 7.3 illustrates the net forces, on the disc. The centripetal forces of rotation are 
always pointing towards the pivot point. 
 
It is seen that, all Laithwaite’s demonstrations were based on a rotating gyroscopic action as the 
distance between the spinning disc and the pivot was about three times the radius of the spinning 
disc. Therefore, if correct, the 4 Laithwaite rules can be reformulated as follows: A rotating 
gyroscope,  
1. Will not exhibit lateral forces in the plane of rotation. 
2. Will not exhibit centrifugal forces in the plane of rotation. 
3. Will not exhibit angular momentum in the plane of rotation. 
4. Will lose weight. 
 
 
8. THE SOLOMON-LAITHWAITE EXPERIMENTS 
 
8.1 Experimental Set-up 
The experimental set-up is as shown in Fig. 8.1. One of the criticisms14 of Laithwaite rotating the 
Big Wheel over his head was that he had pushed the wheel into flight, and therefore, the 
resulting weight loss was due to inertia. This set-up was designed to allow only horizontal 
rotational motion, thereby ensuring that neither vertical inertia nor nutation was possible. 
 
The second criticism15 of the original Laithwaite experiment was that total system weight was 
not measured. The logic is that the weight of the Big Wheel is carried through the wrist and 
should be observable as Total System Weight. We know that the wrist is not capable of such 
weight. However, to satisfy the needs of the critics, the weight scale arrangement was such as to 
measure the Total System Weight. 
 
The analysis in section 6 showed that mathematically, precession could not have been the source 
of the weight loss. To further negate the precession hypothesis, the effected rotation was in the 
opposite sense of precession. 



 
 
8.2 Experimental Procedure 
A first step was to note the total system weight without spin or rotation. A second step was to 
observe any variations in weight if the disc was slowly rotated about the vertical support. The 
rate of rotation was similar to that during the spinning wheel experiment.  
 
The experimental procedure involved spinning the big disc up to 3,000 rpm, and then rotating 
this spinning disc. Observe the total system weight, while spinning and rotating. We noticed that 
the slow down in the spin was quite fast, so our records are taken from examination of video 
records. 
 
 
8.3 Experimental Results 
The individual component weights are documented in Table 8.1. Two experiments were 
conducted. See Table 8.2. Video documentation of the experiments is available at 
http://www.iSETI.us/. The rotation of the spinning disc varied between 0 rpm and 10 rpm, which 
is significantly less than allowed by precession. Rotation was in the opposite sense of that 
required of precession. 
 
We observed that a non-rotating but spinning wheel did not lose weight, but a rotating-spinning 
wheel did. Weight loss was as high as 54 lbs. Note that the weight of the wheel was about 50 lbs. 
The observed weight was not steady and was bouncing around. 
 
A review of video suggests that weight decreased as rotation increased. Weight increased as spin 
decreased.  We noticed that when the spin and rotation was too slow, the wheel would “crash” 
back to earth. It would suddenly regain all it weight, and the effect would be equivalent to 
falling. See Fig 8.2. In other words, there are boundary conditions or threshold values before 
weight loss would come into effect. 
 
Further experiments are required to refine the observed boundaries. For example, I am sure that 
1,000 rpm will not cause weight change, and do believe that the boundary condition is closer to 
2,000 rpm. 
 
 
9. CONCLUSION 
We were able to reproduce Laithwaite’s results, under stricter conditions. The mathematical and 
experimental analyses lead us to conclude that weight loss is real, and that it is not caused by 
gyroscopic precession. There are boundary conditions and threshold values, before weight loss is 
observed. 
 
 
10. NEXT STEPS 
1. Determine the boundary conditions / threshold values. 
2. The theoretical formulation and relationships within the spin-rotate centripetal force field. 
3. Determine whether the weight loss effect is a buoyancy or a propulsion effect. 

http://www.iseti.us/


4. Was the work of other researchers dependent upon gyroscopic field effects? 
1. How much of Podkletnov & Nieminen (1992) results (5,000 rpm) are due to gyroscopic 

spin? 
2. Was Hayasaka & Takeuchi (1989, up to 13,000 rpm) work on one side of boundary 

conditions while Luo, Nie, Zhang, & Zhou (2002) on the other side of these conditions, 
thus producing conflicting results? 
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Object Mass Radius Gravity Gravitational Time dilation Equivalent  
Escape - 
Equivalent 

   
at 
surface

Escape 
Velocity  Lorentz/Time Velocity Error

      
Dilation 
Velocity  

 M R g ve tv vf ve  -  vf

 kg m m/s2 m/s s m/s
        
Sun 2.00E+30 6.90E+08 274.98 621,946 1.00000215195969 621,946 0.0000000%
Mercury 3.59E+23 2.44E+06 3.70 4,431 1.00000000010922 4,431 0.0000153%
Venus 4.90E+24 6.07E+06 8.87 10,383 1.00000000059976 10,383 0.0000018%
Earth 5.98E+24 6.38E+06 9.80 11,187 1.00000000069626 11,187 -0.0000080%
Mars 6.58E+23 3.39E+06 3.71 5,087 1.00000000014395 5,087 0.0000245%
Jupiter 1.90E+27 7.14E+07 23.12 59,618 1.00000001977343 59,618 0.0000002%
Saturn 5.68E+26 5.99E+07 8.96 35,566 1.00000000703708 35,566 -0.0000002%
Uranus 8.67E+25 2.57E+07 7.77 21,201 1.00000000250060 21,201 -0.0000005%
Neptune 1.03E+26 2.47E+07 11.00 23,552 1.00000000308580 23,552 -0.0000019%
Pluto 1.20E+22 1.15E+06 0.72 1,178 1.00000000000772 1,178 0.0001586%
 
Table 2.1: Comparison between Escape Velocity and Time Dilation Velocity 
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Fig. 2.1: Time dilation distorts a particle’s probability cloud with respect to its own frame 
of reference 
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Fig 3.1: Gravitational Time Dilation as a Function of Radius. 
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Fig 3.2: Gravitational Time Dilation Gradient as a Function of Radius. 
 



 
Gravitational Time Dilation Curvature

0.00E+00

1.00E-23

2.00E-23

3.00E-23

4.00E-23

5.00E-23

6.00E-23

7.00E-23

8.00E-23

6,000,000 7,000,000 8,000,000 9,000,000 10,000,000 11,000,000 12,000,000 13,000,000 14,000,000

Radius (m)

C
ur

va
tu

re
Radial Gradient
Tangential  Gradient

 
 
Fig 3.3: Gravitational Time Dilation Curvature as a Function of Radius. 
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Fig. 4.1: Rotational Time Dilation along the Radius 
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Fig. 4.2: Rotational Time Dilation – Gradient & Curvature 



 
Time Dilation 
 

Gravitational Field Centripetal Force Field 

Magnitude Decreases with radius. 
 

Increases with radius. 

Gradient Negative 
Increases non-linearly with 
radius. 
 

Positive 
Increases linearly with 
radius. 

Curvature Positive 
Decreases non-linearly with 
radius. 
 

Positive 
Increases non-linearly with 
radius. 

 
Table 4.1: Comparison between Gravitational Field and Centripetal Force Field 
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Fig 5.1: Time Dilation as a Function of the Radial Distance from Earth. 
 



 
 

 
 

Tangential Time Dilation 

Radial Time Dilation 

For a Gravitational Field the relationship between tangential and 
radial time dilation is given by, 
1/tr

2 – 1/tt
2 = 1 

 
Fig. 5.2: Relationship between Gravitational Field Radial and Tangential Time Dilation 
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Fig 5.3: Time Dilation as a Function of the Radial Distance across the Spinning Disc. 
 
 
 



 
 

 
 

For a Gyroscopic Centripetal Field the relationship between 
tangential and radial time dilation has not yet been determined. 

Tangential Time Dilation

No Rotation With Rotation 

Tangential Time Dilation

Radial Time Dilation

When Rotation exceeds a
threshold value, the “flat”,
tangential only, time dilation
field pops and centripetal forces
facilitate a radial time dilation
field.  
 
The figures depict field strength
values, not physical shape. 

Fig. 5.4: Relationship between Centripetal Force Field Radial and Tangential Time 
Dilation 
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Fig. 6.1: Laithwaite with 50lb Big Wheel: Analysis of Moments Acting on the Wrist 
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Fig. 6.2: Laithwaite with 50lb Big Wheel: Total Weight Analysis 
 



 
 
 

 
 
Fig. 6.3: Laithwaite with Small Wheel Demonstration 
 



 
 
 

Experimental Parameters Laithwaite NASA 
Wheel Mass 23 kg (≈  50 lbs) 1 kg (≈  2 lbs) 
Wheel Radius 30 cm ( ≈ 1 foot) 10 cm (≈ 4 inches) 
Non-Rim Rotating Plane Mass 20% - 30%  < 2% 
Spin 5,000 rpm 60 to 200 rpm? 
Lever Arm Length 2 m (≈  6 ft) 2 cm (≈ 1 in) ?? 
Precession/Rotation Rate 

- Theoretical (centrifugal) 
- Theoretical (precession) 
- Actual Observed 

 

 
450-637 rpm 
157-314 rpm 
7 rpm 

 
- ? 
- ? 

Estimated new g’  
- Theoretical (centrifugal) 
- Theoretical (precession) 
- Actual Observed 

 

 
0.002 - 0.001  m/s2

0.220 – 0.440 m/s2

9.81 m/s2

 
 
9.81 m/s2 

9.81 m/s2

Estimated New Weight  
- Theoretical (centrifugal) 
 
- Theoretical (precession) 

 

 
2.0 - 6.0 g  
(≈  0.1 – 0.2 oz) 
0.5 - 1.0 kg  
(≈  1.1 – 2.2 lbs) 

 
 
 
1 kg  
(≈  2 lbs) 

 
Table 6.1: Comparisons between Laithwaite & NASA Experiments 
 
 



 
 

Estimated Parameters 
How Stuff Works Video 
Deconstruction 

Lever Arm Length, l 
       
0.020  m     

Wheel Radius, r 
       
0.660  m 26 inches

Wheel Spin, w 
       
5.000  Hz 300 rpm 

Gravitational 
Acceleration, g 

       
9.810  m/s2     

Mass of Wheel, m 
       
2.273  kg 5 lb 

Moment of Inertia of 
Wheel, I 

       
0.991        

Angular Momentum, L 
       
4.956        

          
Theoretical Results         
Precession Frequency, 
wp 

       
0.090  Hz 5.40 rpm 

          
Observed Results         
Duration of 1/2 cycle 7 s     
Precession Frequency, 
wp 

       
0.071  Hz 

 
4.29 rpm 

          
 
Table 6.2: Deconstruction of How-Stuff-Works video. 
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Fig 7.1: Gyroscopic Forces 
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Fig 7.2: Precession Deconstruction 
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Fig 7.3: Rotation Deconstruction 
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Fig 8.1: Solomon-Laithwaite Experimental Set-Up 
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Static Weights     
Lower Stand 36 Lb 
Wheel Upper & Lower 
Stands 111 Lb 
Wheel + Upper Stand 75 Lb 
Wheel (+ Bearings) 55 Lb 

 
Table 8.1: Individual Component Static Weights 
 
 
 



 
 
Dynamic Weight Lowest   Highest   Average   
Not Spinning 105.5 Lb 114.5 lb 110 lb 
First Experiment (Spinning) 65 Lb 120.5 lb 92.75 lb 

Change -45 Lb 10.5 lb     
Second Experiment 
(Spinning) 56 Lb 135 lb 95.5 lb 

Change -54 Lb 25 lb     
 
Table 8.2: Experimental Results 
 



 
 
                                                 
1 BBC 1997, http://www.bbc.co.uk/history/historic_figures/laithwaite_eric.shtml
 
2 Videos of Laithwaite’s, The Royal Society Christmas Lecture 1974-1975, and the BBC 
documentary ‘Heretic’ are available from the website 
http://www.gyroscopes.org/1974lecture.asp and http://www.gyroscopes.org/heretic.asp, 
respectively. 
 
3 I’ve collected his most important observations into these four rules. 
 
4 Conversations with Bob Schlitters, of Timberline Iron Works. 
 
5 I have named the effects after the people who first demonstrated or discovered these effects, as 
best I as could research and determine the original discoverer. 
 
6 Abstract: A propulsion and positioning system for a vehicle comprises a first gyroscope 
mounted for precession about an axis remote from the center of said gyroscope. A support 
structure connects the gyroscope to the vehicle. Gyroscopes are used to cause the first gyroscope 
to follow a path which involves at least one precession-dominated portion and at least one 
translation-dominated portion, wherein in the precession-dominated portion, the mass of the first 
gyroscope is transferred and associated movement of the mass of the remainder of the system in 
a given direction occurs, and, in the translation-dominated portion, the mass of the first 
gyroscope moves with an associated second movement of the mass of the remainder of the 
system in substantially the opposite direction, wherein the movement owing to the translation-
dominated portion and is larger than the movement owing to the precession-dominated portion of 
the motion, hence moving the system. 
 
7 Conservations with Marc G Millis of NASA Glen Research Center on June 22, 2005, regarding 
the experiment notes for NASA’s Laithwaite gyroscopic weight loss investigation 
 
8 http://scienceworld.wolfram.com/physics/GyroscopicPrecession.html
 
9 http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html and 
   http://hyperphysics.phy-astr.gsu.edu/hbase/amom.html
 
10 http://farside.ph.utexas.edu/teaching/301/lectures/node88.html
 
11 http://science.howstuffworks.com/gyroscope1.htm
 
12 Videos of Laithwaite’s, The Royal Society Christmas Lecture 1974-1975, and the BBC 
documentary ‘Heretic’ are available from the website 
http://www.gyroscopes.org/1974lecture.asp and http://www.gyroscopes.org/heretic.asp, 
respectively. 
 

http://www.bbc.co.uk/history/historic_figures/laithwaite_eric.shtml
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http://scienceworld.wolfram.com/physics/GyroscopicPrecession.html
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html
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13 Alex Jones was the first to demonstrate this effect to Laithwaite. Source: BBC’s ‘Heretic”. 
 
14 Conversations with Bob Schlitters of Timberline Iron Works 
 
15 Conversations with Marc Millis of NASA Glen 
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